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ABSTRACT

Isotopic abundances of the noble gases were measured in the following Martian meteorites: two

shock glass inclusions from EET79001, shock vein glass from Shergotty and Y793605, and whole rock

samples of ALH84001 and QUE94201. These glass samples, when combined with literature data on a

separate single glass inclusion from EET79001 and a glass vein from Zagami, permit examination of the

isotopic composition of Ne, At, Kr, and Xe trapped from the Martian atmosphere in greater detail. The

isotopic composition of Martian Ne, if actually present in these glasses, remains poorly defined. The

'°Ar/36Ar ratio of Martian atmospheric Ar may be much less than the ratio measured by Viking and

possibly as low as -1900. The atmospheric 36Ar/38Ar ratio is _<4.0. Martian atmospheric Kr appears to be

enriched in lighter isotopes by -0.4%/amu compared to both solar wind Kr and to the Martian

composition previously reported. The Martian atmospheric 36Ar/t3ZXe and 8*Kr/13ZXeelemental ratios are

higher than those reported by Viking by factors of-3.3 and -2.5, respectively. Cosmogenic gases

indicate space exposure ages of 13.9+1 Myr for ALH84001 and 2.7 +0.6 Myr for QUE94201. Small

amounts of 2'Ne produced by energetic solar protons may be present in QUE94201, but are not present in

ALH84001 or Y793605. The space exposure age for Y793605 is 4.9 +0.6 Myr and appears to be

distinctly older than the ages for basaltic shergottites.



INTRODUCTION

Isotopic abundances of several volatile species in the Martian atmosphere were measured in situ

by the Viking spacecraft, but the uncertainties on most of these data are rather large (Owen et al., 1977;

Owen, 1992). The discovery that significant amounts of Martian atmospheric gases are trapped in

impact glass of the EET79001 Martian meteorite (Bogard and Johnson, 1983) presented an alternative

method of determining the detailed composition of some components in the Martian atmosphere. (See

McSween, 1994, for a discussion of Martian meteorites.) Martian atmospheric gas apparently was

incorporated into melt glass by a shock event near the Martian surface, which also injected the glass into

EET7900 I. Experimental studies in the laboratory indicate that shock implantation of noble gases does

not significantly fractionate their elemental or isotopic composition (Bogard et al., 1986). The exact

time of incorporation of noble gases into EET79001 shock glass is not known. However, the observation

that EET79001 and several other shergottites (a sub-class of Martian meteorites) have isotopic ages of

<200 Myr (Shih et al., 1982; Nyquist et al., 1995) strongly implies that the Martian atmospheric gases

were incorporated into these meteorites at a time less than 200 Myr ago. Thus, these gases represent a

geologically recent sampling of the Martian atmosphere.

Until recently, all of the detailed data on the isotopic composition of atmospheric noble gases

and nitrogen trapped in Martian meteorites were obtained on a single impact glass inclusion (no.27) from

meteorite EET79001 (Bogard et al., 1984; Becker and Pepin, 1984; Swindle et al., 1986; Wiens et al.,

1986; Wiens, 1988) and from a small impact glass vein in the Zagami shergottite (Marti et al., 1995).

These data appeared to confirm several isotopic characteristics measured by Viking (Owen et al., 1977;

Owen, 1992), including the elevated _29Xe/_32Xe(2.5, +2-I), '°Ar/36Ar (3000 +500) and _SN/I'N (0.0059

+_.0005) ratios. However, Martian meteorite data indicated that the Martian atmospheric 3_Ar/_SAr ratio

lies near the lower error limit of that measured by Viking (5.5 +1.5) and is lower than that of any other

major known volatile reservoir, including the Earth, Venus, carbonaceous meteorites, and the solar wind

(Pepin, 1991). Wiens et al. (1986) reported the Martian _6Ar/3aAr ratio as 4.1 +_0.2. Bogard (1997)

reevaluated the Martian meteorite data base and concluded that the Martin atmospheric _6Ar/38Ar ratio is

most probably <3.9 and possibly as small as -3.5, and that the Martian '°Ar/_6Ar is probably no greater

than 2500. The Martian atmospheric 36ArPSAr ratio is an important parameter because it was produced

by mass fractionation during loss of an early, but possibly secondary Martian atmosphere and thus

defines the fraction of the atmosphere which was lost over a considerable period of geological time

(Jakosky et al., 1994; Pepin, 1994; Hutchins and Jakosk-y, 1995).
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Thecompositionof trapped neon in EET79001,27 glass is very poorly constrained. With

emphasis on a single temperature extraction, Wiens et al. (1986) suggested a trapped :°Ne/UNe ratio of

9.6 +0.6, assuming a trapped 2tNe/2rNe of 0.03. These authors also suggested that the trapped 2°Ne./_Ar

ratio in their sample was generally similar to the range reported by Viking for the Martian atmosphere.

(Viking did not measure the :°Ne/:rNe ratio.) Bogard et al. (1984) suggested the possible presence of

trapped Ne with Z°Ne/Z"Ne >9.8. From a 3-isotope correlation plot, Swindle et al. (1986) suggested

trapped 2_'eJ:-'Ne =10.6 :_0.6. All these suggested compositions are similar to the terrestrial ratio of

Z°Ne/ZrNe =981. However, in all these earlier analyses of EET79001,27, cosmogenic neon dominates

over any trapped component, and the possibility of some terrestrial Ne contamination must also be

resolved. The Martian Ne isotopic composition also would be an important parameter to further

constrain atmospheric loss models, since Ne, like At, also is expected to be strongly mass fractionated

during such losses.

Viking did not report isotopic compositions for Ne, Ks, and Xe (other than _:gXe/mXe) in the

Martian atmosphere (Owen et al., 1977). Detailed measurements of the isotopic composition of Kr and

Xe have been reported for glass inclusion EET79001,27 (Bogard et al., 1984; Becker and Pepin, 1984;

Swindle et aI., 1986; and Wiens, 1988). (No Ne or Kr data were reported for the Zagami glass analyses;

Marti et al, I995.) These EET79001,27 measurements showed that Kr is isotopically mass fractionated

in favor of lighter isotopes relative to both terrestrial and AVCC (carbonaceous meteorite) reservoirs and

apparently contains an extra component of S°Kr and SZKrproduced by neutron capture by Br at the

Martian surt'ace. Isotopically, Martian Kr closely resembles solar wind Kr (Pepin, 1991). Xenon in

EET79001.27 also is isotopically mass fractionated relative to terrestrial and AVCC reservoirs, but in

favor of heavier isotopes, which is just opposite to the case for Martian Kr. The very different isotopic

compositions of Martian atmospheric Kr and Xe, in comparison to other noble gas reservoirs, contributed

to the suggestion that the early, primary atmosphere of Mars experienced massive loss of all noble gases

except Xe. which was left strongly mass fractionated in the residual atmosphere (Hunten et al., 1987;

Pepin, i991). A component of Ar and Kr, which was not fractionated by this massive loss, was later

added as part of a secondary Martin atmosphere, formed either by mantle outgassing or late addition of

volatiles, or both. However, in this atmospheric model significant amounts of secondary Xe could not

also be added, or the fracvionated Xe composition resulting from the massive atmospheric loss would be

altered (Pepm, 1991; Pepin, 1994). A mechanism by which Ar and Kr, the latter having near-solar

composition, could be added to the secondary Martian atmosphere without also adding significant Xe has

not yet been demonstrated.
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It isapparent that our knowledge of the composition of the noble gases in the Martian

atmosphere and their evolution over time rests on two limited data sets - I) the Viking analyses with

incomplete results and generally large uncertainties, and 2) multiple analyses of a single,~l cm diameter,

impact glass inclusion in the EET79001 meteorite, augmented by some data from a single Zagami glass

vein. An obvious question to ask is how representative of the Martian atmosphere are the gases trapped

in glass inclusion EET79001,277 Is it possible that atmospheric gases trapped in other impact glasses

have different detailed compositions compared to gases in EET79001,277 In this paper we directly

address this question by reporting noble gas analyses of two additional glass inclusions from EET79001

and impact glasses from two additional Martian meteorites for which such data have not previously been

reported. Thus, the new isotopic data reported here represent a more extensive suite of impact glasses

for determining Martian atmospheric noble gas compositions compared to previous investigations. In

this paper we will be concerned primarily with the isotopic composition of these trapped gases. In a

separate paper (Bogard and Garrison, 1998) we use a portion of these data to discuss in detail the

elemental (Ar/IcU'/Xe) composition of trapped gases in Martian meteorites. In this paper we also report

isotopic concentrations of cosmogenic He, Ne, and At', produced in space by energetic particle irradiation

in these glass samples and in non-glass samples of Martian meteorites QUE94201 and ALH8400 I.

These data address another important question about Martian meteorites, which is how many impact

events are required to eject Ma_an meteorites from Mars and when did these occur?

SAMPLES, METHODS, AND MEASURED DATA

To further characterize the isotopic composition of trapped and cosmogenic gases in Martian

meteorites, we measured noble gases in three samples of ALH84001, two samples of QUE9420 I, two

samples of Shergotty, one sample ofY793605, and two samples of EET7900 I. The Shergotty and

Y793605 samples were impact glass taken from rare, dark veins only a few mm in width. Shergotty-B

was -90% glass and -I0% host rock, whereas Shergotty A was only -I0% glass. Sample EET79001,8

was from a small spherical glass inclusion (alpha) located in lithology-A a few cm away from the

original ,27 (bravo) inclusion that yielded most of the previous data on Martian atmospheric noble gases.

(Meyer (I 996) gives a description of EET79001 and its glass inclusions.). Sample EET79001,104 was

taken from an irregular glass inclusion located in lithology B. Most noble gases in these impact glasses

were shock-implanted from the Martian atmosphere, but other gas components are also present. The

analyzed samples of ALH84001 and QUE94201 were whole rock, not impact glass, _aBdrepresent

different subsurface depths within these meteorites. The ALH84001 samples came from depths below



thefusioncrustof,--0.5-2mm(,113),-1.5-3.0 rnm (,114-1), and -8-10 mm (,114-2). The QUE94201

samples came from depths of--.0.5-2.0 mm (,28) and from an interior sample without fusion crust but

from an unknown depth (,31). Our primary purpose in analyzing these non-glass samples was to

characterize those noble gas components produced during space irradiation by cosmic ray (GCR) and

energetic solar (SCR) protons.

Noble gases were extracted from these samples by heating at two to four increasing temperature

steps. The gases were gettered on hot Zr-A1 alloy and separated into He+Ne, At, and Xe fractions by

adsorption on charcoal at cold temperatures, and their isotopic abundances were measured with a VG-

3600 mass spectrometer. The Kr apportioned between the Ar and Xe fractions, whereas 90-95% of the

Ar was in the Ar fraction and -95% of the Xe was in the Xe fraction.. The Kr isotopic composition was

measured in the Xe fraction using a procedure that measures Kr and Xe isotopes simultaneously. The

use of multiple charcoal fingers at liquid nitrogen temperature assured that the amount of '°Ar in the

He+Ne fraction was small, and consequently corrections to 2°Ne for doubly charged 40Ar were very

small. In some eases Ar and Kr concentration measurements were made on separate volume aliquots of

the total gas to lessen changes in instrument sensitivity and memory resulting from high Ar pressures.

Sensitivity of the spectrometer was determined after each sample analysis using calibrated gas pipettes

that reproducibly deliver a known volume of an artificial mixture of noble gases. After these sample

analyses, we made an extended series of calibrations of these gas pipettes using atmospheric noble gases

delivered by two additional gas pipettes with accurately determined delivery volumes. In all cases, either

large quantities of Ar were removed from the pipetted gases before the other noble gases were analyzed,

or corrections were applied for the effects of large partial pressures of Ar on spectrometer sensitivities.

We believe that measured abundances of He, Ne, Ar and Xe for individual meteorite samples are

uncertain to <10% and that of Kr to <15%.

Measured isotopic concentrations of He, Ne, and Ar in these Martian meteorite samples are

listed in Table 1. Tables 2 and 3 give the measured isotopic composition of Kr and Xe, respectively. Kr

and Xe were not measured in the lowest temperature extraction (350 °C) of EET79001,104, and only a

few isotopes of Kr and Xe were measured for the 350 °C extractions of EET79001,8 and Y793605. All

Kr and Xe isotopes were measured in higher temperature extractions. Kr and Xe also were not measured

for the lowest temperature extractions (450°C) of ALH84001 samples nor for any extractions of

QUE94201 samples. Krypton masses 84 and 86 and all isotopes of Xe were measured for the melt

extractions of ALH84001 samples. ' '
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In thispaperwewill utilize these data to discuss both the trapped Martian atmospheric

component and the cosmogenic component in these meteorites. In discussing the trapped Martian

component we will be concerned primarily with its isotopic composition. We have separately presented

and discussed the relative elemental abundances of At, Kr, and Xe in the trapped Martian atmospheric

component (Bogard and Garrison, 1998). In considerations of trapped Ar, Kr, and Xc, we will exclude

that gas released at low extraction temperatures of <450°C in order to exclude small amounts of

terrestrial atmospheric noble gases typically adsorbed on grain surfaces and released at low temperatures.

Bogard (1997) presented an extensive discussion of the evidence for release of terrestrial Ar

contamination at low extraction temperatures for previous analyses of impact glasses from Martian

meteorites. Additional evidence for terrestrial contamination at low extraction temperatures for several

previous and current analyses of Martian meteorites occurs as lower 4°Ar/36Ar and '29Xe/'32Xe ratios,

which more closely resemble those of the Earth's atmosphere.

Neon

TRAPPED NOBLE GAS ISOTOPIC COMPOSITIONS

Neon comprises ~2.5 (+3.5,- 1.5) ppm by volume of the Martian atmosphere, but the Ne isotopic

composition of the atmosphere was not measured by Viking (Owen et al., 1977). As mentioned earlier,

the composition of trapped Ne in Martian meteorites previously was estimated only for a single glass

inclusion, EET79001,27 (Bogard et al., 1984; Swindle et al., 1986; Wiens et al., 1986; Wiens, 1988).

Cosmogenic Ne and terrestrial Ne released at low extraction temperatures appear to dominate most of the

Ne inventory, in this inclusion. The trapped component present, if any, seems to have an isotopic

composition similar to the terrestrial value.

Figure I is a three-isotope neon plot for all temperature extractions of the EET79001, Shergotty,

and Y793605 glass samples reported in Table I. Any trapped Martian Ne is expected to plot on this

figure toward the upper left in the vicinity of the terrestrial and AVCC components, whereas cosmogenic

Ne has :°Ne/:2Ne ratios <I .0 and would plot in the lower right. Considering our new data for impact

glasses, the first (350°C) extractions of all five samples show larger 2°Ne/22Ne ratios indicative of

terrestrial or trapped Martian gas, whereas higher temperature data indicate almost pure cosmogenic Ne.

The data suggest some variation in the cosmogenic 2tNe/2-'Ne ratio, consistent with shielding differences

among the samples and possibly the presence of some Ne produced by energetic solar protons, as is

discussed in a later section on cosmogenic gases. Most of the data could be consistent with only a two-

component mixture of adsorbed terrestrial Ne and cosmogenic Ne. Also shown in Figure 1 are Ne
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isotopicdatareportedby Swindleetal. (1986),Wiensetal. (1986),andWiens(1988)forglassinclusion

EET79001,27.AdditionalNedataforthis inclusion(Bogardetal., 1984;BeckerandPepin,1984)had

largeranalyticaluncertaintiesandarenotplotted.Theseolderdatagenerallyshowthesamemixing

trendasthenewdatareportedhereandarealsoconsistentwith a "trapped" Ne component which

resembles that of the Earth or AVCC. Only a very few extractions suggest somewhat lower trapped

2°Ne/22Ne ratios. (The older measurement with Z_Ne/Z_Ne=5.6 and 21Ne/ZVNe=0.15 had a large (32%)

'uncertainty, as did several other individual extractions from previous data.)

The extrapolated mixing line defined by three temperature extractions of sample Y793605,71

suggests a lower trapped 2_e/UNe of-7.0 and may be distinctly different from the composition of

terrestrial or AVCC Ne and the trapped composition suggested by most other glass data. Given the large

mass fractionation observed in Martian _Ar/3_Ar (Bogard, 1997; Hutchins and Jakosky, 1996), we might

expect a :_e/UNe ratio for the Martian atmosphere which is considerably less than the values for both

the earth and carbonaceous meteorites (Figure 1). However, among the new data on impact glasses

presented here, only Y793605 suggests a trapped 2°Ne/UNe less than that of AVCC. Because only about

half of the trapped ha', Kr, and Xe in this sample was likely derived from the Martian atmosphere

(Bogard and Garrison, 1998), it is hard to understand why Y793605,71 alone would show a unique

Martian atmospheric Ne signature.

To help ascertain if Martian Ne is present in Martian meteorites, we can also compare the

trapped z.°Ne/_6Ar ratios in impact glasses (Table 4). Although trapped 2°NeP6Ar reported by Viking for

the Martian atmosphere is 0.5, uncertainties in the measurements permit the ratio to lie in the broad range

of-0.15-1.0 (Owen et al., 1977). For this comparison trapped ZONeis defined as the total measured

quantity of 2°Ne (summed over all extractions) minus the cosmogenic 2°Ne and includes both Martian and

terrestrial components. For each impact glass we calculated the concentration of cosmogenic Z°Ne from

the concentration of cosmogenic :LNe and [2°Ne/2LNe]co, =1.06 (Table 5 and later discussion). The

percentage of the total Z°Ne that is trapped rather than cosmogenic is 51-59% for the two EET79001 glass

inclusions and -25% for Shergotty-B and Y793605,71. Derivation of trapped 3_Ar concentrations (Table

4) are considerab!y more precise and are discussed in the following section.

Because trapped ' ._e/36Ar ratios are similar for Martian and terrestrial atmospheric components,

this ratio in impact glasses cannot be used to distinguish between these two Ne sources. However, if the

_°Ne/36Al" ratio in glasses were considerably less than the expected Martian ratio, that might be evidence

that an adsorbed or occluded terrestrial component incorporated Ar more readily than',Ne. The

observation that all analyses of impact glasses in Table 4 give trapped _°Ne/_6Ar ratios within the range of



theViking Martianvalue(withtheexceptionof EET79001,8andEET79001,104,whichgivevaluesup

to afactorof twolessthantheMartianlimit) wouldpermit,inprinciple,this2°Ne to be Martian.

However, the majority oft.he trapped 2°Ne was released at relatively low extraction temperatures of

350°C or 750°C (except for sample EET79001,8), which was not the case for trapped Ar, Kr, and Xe.

Therefore, it seems equally probable that most of the trapped Ne in these glasses is terrestrial in origin.

Given the uncertainties associated with the isotopic composition of trapped Ne in Martian meteorite

impact glasses, and whether its origin is Martian or terrestrial, we conclude that the Ne isotopic

composition of the Martian atmosphere remains undefined.

Argon

Trapped Martian Ar is clearly present in these impact glasses (Table 4), but determining its

isotopic composition requires corrections for several other Ar components. The first (350°C) extractions

of the five impact glass samples reported in Table 1 released relatively small amounts of argon with

4°Ar/3+Ar ratios similar to that of the Earth's atmosphere or only modestly greater. We exclude from the

total Ar the contributions of these first extractions, which for all glasses were <5% of the total 3+Ar. The

higher temperature data, which released the trapped Martian component, must be corrected for

cosmogenic Ar and for radiogenic 4°Ar. The detailed procedure for making these corrections to literature

data on impact glass in EET79001,27 and Zagami was discussed by Bogard (1997). Assuming -180 Ma

ages for these meteorites (Shih et al., 1982), corrections for radiogenic '°Ar from in situ K decay are <1%

for the EET79001 samples, -6% for Shergotty, and -2% for Y793605. Corrections to the 4oAr/36Arratio

for cosmogenic 36Ar are 1-2% for samples EET79001,8 and EET79001,104 and -17% for Shergotty and

Y793605 glasses. Corrections to the 3_Ar/38Ar ratios are even larger due to larger cosmogenic corrections

to 3BAr. Our best estimate of trapped 36Ar concentrations for literature data of Martian meteorite impact

glasses, excluding that Ar released at the first extraction and making cosmogenic corrections based on Ar

measurements of non-glass samples from the same meteorite, are discussed elsewhere (Bogard, 1997;

Bogard and Garrison, 1998) and also are given in Table 4.

When appropriately corrected, glass samples EET7901,8 and EET79001,104 give trapped

4°Ar/36Ar ratios of 1830 and 1880, with uncertainties of no more than a few percent. Shergotty-B and

Y793605,71 give 4°Ar/36Arratios of 1870 and 1460, with uncertainties of several percent. The corrected

trapped 36Ar/38Ar ratios for the two EET79001 glass samples are 3.9 and 4.0, respectively, with

uncertainties of no more than a few percent. Corrected +°ArP_Ar and 3+Ar/38Ar ratios previously reported

by several laboratories for EET79001,27 and Zagami ranged over -1200-2175 and _3'_5-4.3, respectively

(see Bogard, 1997). The derived trapped 36Ar/38Ar for Shergotty-B is 4.36 (using Shergotty-A data to



make cosmogenic corrections), but the corrections were much larger (58% for 3SA.r)and the trapped ratio

is correspondingly much more uncertain. If we use the cosmogenic 3BArconcentration of ~2 x 109cm3/g

reported for Y793605 (Eugster et al. ,1997b; Nagao et al., 1997), then an ~65% correction is required to

our Y793605 data, and the calculated trapped 36Ar/3gAr is very uncertain.

Measurements obtained by the Viking spacecrai_ for the Martian atmosphere gave '°Ar/36Ar

--3000 +500 and 3_Ar/3_Ar --5.5 +1.5 (Owen et al., 1977; Owen, 1992). From data on glass inclusion

EET79001,27, Wiens et al. (1986) deduced an atmospheric 36Ar/38Ar ratio of 4.1 _+0.2. Bogard (1997)

considered the existing meteorite data base in more detail and argued that because of the probable

presence of Martian mantle Ar and/or terrestrial Ar in these impact glasses, the determined trapped

36ArPSAr ratios are only upper limits to this ratio in the Martian atmosphere. Bogard (1997) made

various model assumptions as to the "°Ar/3_Ar ratios in the Martian atmosphere and the Martian mantle

and concluded that the Martian atmospheric '°Ar/36Ar in these glasses probably is no greater than -2500

and that the Martian atmospheric 36Ar/38Ar is <3.9 and possibly as small as ~3.5. The Ar data presented

here for two additional glass inclusions of EET79001 and probably for Shergotty glass are fully

consistent with this evaluation of earlier literature data.

Apparent inconsistencies exist, however, between trapped "°Ar/36Ar and other trapped noble gas

data from impact glasses of Martian meteorites. As discussed by Bogard and Garrison (1998), larger

nS2Xe/_nXe ratios in Martian meteorite impact glass are almost certainly indicative of greater relative

amounts of trapped Martian atmospheric noble gases. From correlations among ngXe/_32Xe, 3_Ar/Xe, and

Kr/Xe ratios, we concluded that the _29Xe/tnXe ratio of the Martian atmosphere trapped in these glasses

is -2.6. We further concluded that lower values of this ratio observed in some glass samples are due to

the presence of two additional components, terrestrial contamination and a Martian mantle component,

both with _29Xe/_3'Xe --1.0 (Ott, 1988; Swindle, 1995). With the same reasoning, one could assume that

those impact glasses which show trapped '°Ar/36Ar ratios <2500 also contain trapped Ar from a source

other than the Martian atmosphere. Thus, one might expect a mixing correlation between trapped

:°Ar/_6Ar and _'gXe/_32Xe for impact glasses. Figure 2 shows that data for impact glasses scatter widely

and that a simple mixing correlation does not exist. In addition, the four analyses by three laboratories of

the single glass inclusion EET79001,27 show the greatest variation in trapped 4°Ar/36Ar, nearly a factor

of two. This variation among EET79001,27 analyses cannot be due to the small corrections (< 1%) made

to measured data for 4°Ar formed in situ by K decay. Neither can the variation be due to terrestrial Ar
, i

released at low extraction temperatures, as the differences in 4°Ar/S6Ar among various _nalyses persist

throughout the extraction temperatures. It is also very unlikely that the few percent corrections made for
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cosmogenic 36Ar were significantly in error, even if the chemical composition differed appreciably

among samples.

Another inconsistency in Figure 2 data is that all whole rock samples of impact glass suggest

trapped '°Ar/36Ar ratios significantly lower than the minimum value reported by Viking of-2500. This

observation is true even for those samples with _e/t3ZXe approaching 2.6, which presumably contain

nearly pure Martian atmospheric Xe. Among the individual stepwise temperature data for impact

glasses, only two analyses (EET79001,27 by Becker and Pepin (1984) and Wiens et al. (1986)) gave

measured '°Ar/36Ar ratios > 1900. None of the individual temperature extractions for seven other

analyses of impact glasses (including analyses of EET79001,27 in two other laboratories) gave measured

'°Arp6Ar >1900. However, the low tzg"Xe/mXe of 2.07 for the analysis by Becker and Pepin (1984)

suggests that their sample did not contain pure Martian atmospheric gas. (The analysis by Wiens et al.

(1986) did not report Xe data.) In addition, correlations between tsN/t4N and Ar also indicate that the

EET79001,27 samples analyzed by Becker and Pepin (1984) and Wiens et al. (1986) and the Zagami

samples analyzed by Marti et al. (1995) contained significant amounts of trapped Ar and N other than

that derived from the Martian atmosphere.

The most likely interpretation for the observed scatter in the trapped *°Ar/3_Ar and t29XeP32Xe

isotopic ratios for Martian meteorite impact glasses is that most of these samples contained trapped

components other than that acquired from the Martian atmosphere. The relative abundances of these

additional trapped components were not the same for all sample analyses and perhaps not the same for

As and Xe. It has been suggested that trapped noble gases in Chassigny, with t29Xe/_32Xe =t .03, may

represent a Martian mantle component present in varying amounts in many Martian meteorites (Ott,

1988; Swindle, I995; Bogard, 1997). Figure 2 shows the loci of two component gas mixing between a

possible Martian atmospheric component with UgXe/t32Xe =2.6 and _°Ar/36Ar = 1900 and trapped noble

gases in Chassigny. Because Chassigny has a much lower trapped 3_Ar/t32Xe = 19 (Ott, 1988) compared

to the Martian atmospheric value of 900+ 100 (Bogard and Garrison, 1998), the mixing trend between

these two components is strongly curved downward. Trapped "°Ar/36Ar in Chassigny is not known, and

we have assumed a ratio of 300, which is intermediate between values of 0 and 500 considered by

Bogard (1997). However, the mixing trend between these two components is not sensitive to the choice

of trapped "°Ar/36Ar in Chassigny, and values in the broad range of 0-1000 do not appreciably change the

vertical portion of the Mars/Chassigny mixing trend..

It is also possible that some of these glass analyses released terrestrial AS not' excluded with the

low temperature extractions, a conclusion reached by Bogard and Garrison (1998). The terrestrial Ar/Xe
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ratio(1350)is largerthanthatfortheMartianatmosphere,andconsequentlythemixingtrendbetweena

Martianatmosphericcomponentandtheterrestrialcomponentbendsslightlyupward(Figure2). A third

alternativeexplanationforthedatascatterinFigure2is thatthehighest_°Ar/3_Arratiosseeninsome

individualtemperatureextractionsof EET79001,27mayrepresentexcessradiogenic"°Ar.Thisisa

componentwhichwerecentlysuggestedexistsinnon-glasssamplesof Zagami,QUE94201,and

ALH84001(GarrisonandBogard,1997).

Thelikelypresenceof upto fourtrappedcomponents(Martianatmosphere,Martianmantle,

terrestrialcontamination,andexcessradiogenic"°Ar) in different relative proportions among samples

could explain all of the scatter in the plotted glass data in Figure 2 (with the possible exception of the low

'°Ar/3_Ar measured in EET79001,27 by Swindle et al., 1986). The fact that one of these components

(excess radiogenic _°Ar) can increase trapped _°Ar/S6Ar without affecting 129Xe/mXe means that the

meteorite data are not constrained to lie within the boundaries defined by the two mixing curves of

Figure 2. Further, the 4°Ar/36Ar ratio of the Martian atmosphere is not required from meteorite data to be

as large as the lower limit of-2500 set by the uncertainty given to the Viking measurement. In fact,

better agreement of meteorite data with these various possible Ar components is obtained assuming a

lower value for Martian atmosphere 4°Ar/36Ar. Comparing these glass data to various mixing trends

suggests Martian atmospheric 4°Ar/36Ar --1900, which is the value used in Figure 2. If Martian

atmospheric 4°Ar/36Ar is as low as -1900, those samples with the highest *29Xe/mXe ratios would then

contain nearly pure Martian atmospheric noble gas, a conclusion also reached by Bogard and Garrison

(1998) from consideration of 129Xef132Xe and the -'_Ar/K.rfXe elemental ratios. Thus, one reasonable

interpretation of the Ar data is that the 4°Ar/36Ar ratio of Martian atmospheric gases trapped in these

meteorites is considerably less than the lower limit set by Viking and possibly as low as -1900.

The possibility of a considerably lower '°Ar/3eAr ratio for the Martian atmosphere would affect

the conclusion reached by Bogard (1997) that the atmospheric 36Ar/38Ar ratio must be <3.9 and possibly

much less. We used the same model calculation parameters as previously, but assumed Martian

atmospheric 4°Ar/36Ar =1900, and calculated Martian atmospheric 36Ar/38Ar for the new analyses of

EET79001 glass presented here and for the literature data reported for EET79001,27 and Zagami. The

calculated atmospheric 36Ar/3SAr ratios increase somewhat, and most data define a range of-3.4-4.0. In

the case tkat atmospheric *°Ar/36Ar=-1900, the model calculations of atmospheric 36Ar/3SArare not

particularly sensitive to assumptions about the 4°Ar/36Ar ratio of additional trapped components, be they

terrestrial or Martian mantle. Thus, a consequence of a possibly lower 4°Arp6Ar ratio for the Martian

atmosphere is that the atmospheric 3_Ar/3SAr ratio may be slightly higher, but still <4.0.
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Krypton

Terrestrial noble gases can be adsorbed on grain surfaces of meteorites or can be incorporated

into small amounts of terrestrial weathering products, and this terrestrial gas can be relatively difficult to

remove during stepwise heating in the laboratory, especially in the case of Kr and Xe. We have observed

significant amounts of terrestrial Ar released at low temperatures from several Antarctic meteorites,

including Martian meteorites. In addition, most analyses of impact glasses from Martian meteorites

show much lower t29Xe/mXe ratios at low extraction temperatures, which in some cases approach the

terrestrial value (e.g., Table 3; Swindle et al., 1986; Becker and Pepin, 1984; Wiens, 1988). For these

reasons we believe that Kr and Xe released at lower extraction temperatures from Martian impact glass

should not be used in determining the composition of Martian atmospheric gases. For EET79001,104 we

did not measure Kr and Xe in the 350°C extraction. For the other samples we do not consider that gas

released at the 350°C and 750°C extractions (Tables 3 and 4). Fortunately, most of the Kr and Xe in

impact glasses is released at higher extraction temperatures.

It has been pointed out that the isotopic composition of Martian Kr derived from the

EET79001,27 glass inclusion shows an apparent mass fractionation trend compared to terrestrial Kr and

resembles Kr measured for the solar wind (Swindle et al., 1986; Pepin, 1991). Further, Ott (1988)

reported that the isotopic composition of Xe in the Chassigny Martian meteorite closely resembles that of

the solar wind and suggested that this Xe represents a Martian mantle component. For these reasons we

compare the isotopic composition of Kr determined in meteorite impact glasses against the composition

of solar wind Kr as measured in lunar soils and a few meteorites. Unfortunately, the isotopic

composition of solar Kr is not exactly known, and several different compositions have been suggested in

the past. Solar wind noble gases usually experience variable degrees of mass fractionation upon

implantation into exposed grain surfaces. Consequently, even among favorable samples for such studies,

the derived solar Kr compositions show isotopic variations of-2% at each isotopic mass. Pepin et al.

(1995) summarized the preferred data for determining the solar wind Kr composition and suggested an

average solar composition called Kr-1.

Figure 3 plots the _Kr/_4Kr ratios measured in the 1000°C and 1550°C extractions of EET79001,8

and EET79001,104 and the 1550°C extractions of Shergotty-B and Y793605,71. All ratios have been

normalized to the solar wind Kr-1 composition. Thus, deviations of specific EET79001 isotopic ratios

from the horizontal line of value 1.0 measure differences in these compositions compared to solar Kr-1.

Compared to EET79001 glass analyses, Kr measured in Shergotty-B and Y793605 gtgss samples tend to

scatter more and have larger analytical uncertainties. Our 78Kr measurements suggest some hydrocarbon
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contaminationatthismass,althoughnonewasobservedinblankanalyses,andconsequentlymass78

dataarenotfurtherconsidered.AlsoplottedinFigure3forcomparisonarethe1600°Cextractionof

EET79001,27reportedbySwindleet al.(1986),whichreleased53%of thetotalK.r present in their

sample, and the 1500°C extraction of EET79001,27 reported by Becker and Pepin (1984), which released

77% of the total Kr present in their sample. These two extractions showed the smallest analytical

uncertainties of all extractions from these respective samples. Some other extractions of these samples

show Kr compositions that more closely resemble that for the Earth and, in our opinion, likely contain

some terrestrial Kr contamination. The data in Figure 3 represent three impact glass inclusions in

EET79001 as measured in three laboratories, as well as less precise data from impact glasses in two

additional meteorites. Our new data for EET79001 have generally comparable or smaller analytical

uncertainties compared to previous measurements, but all data show generally similar trends. One

• difference is that 8°Kr/_4K.r ratios in some of our analyses are slightly higher than those previously

reported. This may be due to small effects of charge exchange on 4°At ions so as to be detected as mass

80 within the mass spectrometer. Although most of the Ar was separated from the K.r fraction analyzed,

the "°Ar/8°Krratio typically was still -105 (versus >6x 106 in EET79001 total). Previous reports of

S°Kr/S4Kr in EET79001 glass do not state if corrections for _°Ar were applied.

Figure 4 compares Kr isotopic data for EET79001 glass inclusions with several other

compositions, all normalized to the same solar wind Kr-1 composition. Plotted are the average (and one

standard deviation) of the six analyses of three inclusions of EET79001 shown in Figure 3 and the

1550°C extraction of EET79001,8, which possesses the overall smallest uncertainty. Also plotted are the

Kr isotopic data for Chassigny (Ott, 1988), the composition for the Earth, the average composition

observed in carbonaceous chondrites (AVCC), and the composition of the Martian atmosphere derived

by Pepin (199 l) from Martian meteorite data. From Figure 3 it can be seen that the EET79001 data are

isotopically lighter compared to solar Kr-l, but that the g°Kr abundance is in excess in comparison to the

mass trend suggested by the other isotopes. This excess in 8°I¢h"has been attributed to neutron capture on

bromine at the Martian surface (Bogard et al., 1984; Becker and Pepin, 1984; Swindle et al., 1986). If

excess 8°Kr was produced by neutron capture, then a small component of neutron-capture _2Kr must also

be present. The excess, neutron-capture ratio of"°Kr/82Kr is expected to vary from -3.5 for thermal

neutrons to -2 for neutrons having kev energies (Marti et al., 1966). The EET79001 S2Kr data shown in

Figure 4 have been corrected for this neutron component, assuming production by thermal neutrons and a

neutron excess of 7.5% in 8°Kr/84Kr, which is the average of analyses reported by Be'el_er and Pepin



14

(1984)andSwindleetal. (1986).Thiscorrection amounted to only 0.5% in the 82Kr/84Kr ratio. A very

similar correction was applied by Pepin (199 I) to EET79001,27 data.

The line labeled "Mars atmosphere" (Figure 4) represents our suggested composition for Martian

atmospheric Kr incorporated into meteorite impact glass. To enable comparison with other Kr

reservoirs, a likely neutron capture component of S°K.r and S2Krhas been removed from this atmospheric

composition, although this neutron component was probably shock-implanted along with the derived

atmospheric component. (Because mass 80 was used as the basis for this correction, the Martian

atmospheric composition in Figure 4 does not include 8°K.r.) The Martian atmospheric trend line is

defined by the more precise data from the 1550°C extraction of EET79001,8, but is completely consistent

with the average of six EET79001 temperature measurements made in three laboratories. This Martian

composition suggests a fractionation trend that is -0.4%/amu lighter compared to the solar Kr-I

composition and _1.2%/amu lighter compared to terrestrial Kr. Within respective uncertainties, the Kr

composition of the Martian atmosphere derived by Pepin (I 99 I) marginally overlaps that of the

EET79001 data (Figure 4). However, the EET79001 data indicate slightly higher 82Kr/S_Kr and 83Kr/S+K.r

ratios and lower 8+Kr/S+Kr ratios compared to Pepin's derived composition. We suggest that use of all

temperature extractions for EET79001 by Pepin (I 99 I) incorporated some terrestrial Kr adsorbed on

sample EET79001,27 and caused slight rotation of his derived Martian Kr composition toward the

terrestrial trend in Figure 4. Some specific temperature extractions in these original data suggest such a

terrestrial contamination.

We can speculate on the possible relationship between the Kr isotopic composition for the

Martian atmosphere derived here and that of solar Kr derived from implanted solar wind. First we note

that Martian atmospheric S"Kr and S3Kr appear to be -0.5- 1% in excess compared to a linear mass

fractionation trend defined by S+Kr and B6Kr. In other words, Martian atmospheric Kr appears not to

define a precise linear fractionation trend compared to either terrestrial or solar Kr compositions. As

mentioned above, implanted solar wind commonly shows mass fractionation and isotopic differences

among samples. Thus, the apparent -0.4%/amu average mass difference between Martian Kr and solar

Kr-I may reflect small amounts of mass fractionation present in the solar component. The Martian

mantle may have acquired a solar component by direct incorporation into pre-planetary grains rather than

by ion implantation from the solar wind, and the mass fractionation effects for the two mechanisms may

not be the same. On the other hand, the composition of Kr measured in Chassigny (Ott, 1988) appears to

be different from either Martian or solar Kr, and shows large excesses at masses 80 _13d 83 and a small

excess at mass 82. These excesses do not closely resemble the Kr spectrum expected from cosmic ray



15

interactions.BecauseXein ChassignycloselyresemblessolarwindXe(Ott,1988),wemightexpect

thatChassi_yKr wouldalso.Assumingthatthissingleanalysisof Kr inChassignyisaccurate,Martian

atmosphericI(Lrmightbeexplainedasamixtureof mostlysolarKr-1 andasmallerproportionof

ChassignyKr. Suchamixturecouldproducethenon-linearfractionationpatternforMartian

atmosphericgasescomparedto terrestrialandsolarwindKr. Variableproportionsofa Chassigny-like

componentmightalsoexplainsmallobserveddifferencesin Kr compositionsamongEET79001

analyses.(Figure3). ThisexplanationassumesthattheChassignycomponentis indigenousto EET79001

andnotshock-implanted(Ott, 1988;Bogard,1997).IfChassignyK.rismantle-derived,thehighrelative

abundancesofS°Krand82Krareunlikelytohavebeencausedbyneutroncaptureeffects,andanorigin

fortheexcess83Krin Chassignyis evenmoredifficultto explain.

Xenon

Asin thecasewithKr,mostof theXein impactglasseswasreleasedatextractiontemperatures

>750°C(Table3),andonlythisgaswasconsideredinevaluatingthetrappedXeisotopiccomposition.

Unfortunately,thequantityof Xemeasuredin theseMartianglasseswaslowerthanthatforKr andthe

uncertaintiesof theXe isotopic measurements were larger. Figure 5 plots the iXe/mXe ratios measured

in the 1550°C extraction of EET79001,8 and the average of four EET79001 analyses, both normalized to

the composition of the Martian atmosphere reported by Swindle et al. (1986). Also plotted in Figure 5

are the data for the 1600°C extraction of EET79001,27 (Swindle et al., 1986) and for Chassigny (Ott,

1988). The isotopic composition of trapped Xe in impact glass EET79001,8 generally agrees within one

sigma uncertainties with both the 1600°C extraction of EET79001,27 and with the Martian atmospheric

component deduced by Swindle et al. (1986). The one exception is ¿ZgXe, which shows somewhat greater

enrichment in EET79001,8. Thus our new isotopic data on Xe in Martian meteorite glasses support the

Martian atmospheric Xe composition reported by Swindle et al. (1986) from analysis of EET79001,27.

The isotopic composition of Xe in Chassigny resembles that of the solar wind and is quite different from

the that in Martian atmosphere. Possible reasons for this difference include mass fractionation of Xe

during earl',', massive loss of the Martian atmosphere, as discussed by Pepin (1991).

Relative Elemental Composition

These new data on impact glasses, when combined with literature data, permit a more accurate

determination of the relative elemental abundances of Ar, Kr, and Xe for Martian atmospheric gases

trapped in Martian meteorites. Determination of the trapped 36Ar/S4Kr/_3'Xe ratios from these data are

discussed in detail in Bogard and Garrison (1998). In that paper we use the ngXe/t32Xe ratio as a measure
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of therelativeamounts of Martian atmospheric gases present in impact glass and conclude that a value of

-2.6 the is most probable value for the Martian atmosphere. By comparing _29Xe/_3ZXeagainst 3nAr/t3"Xe

and a_Kr/l_2Xe ratios, we conclude that trapped noble gases in impact glasses represent three components.

One component is the Martian atmosphere, which is most prominent in impact glasses; a second

component probably derives from the Martian mantle and resembles noble gases trapped in the Martian

meteorite Chassigny (Ott, 1988); the third component is contamination by terrestrial noble gases,

possibly in weathering products. Still a fourth component with smaller Xe/Kr and Xe/Ar ratios

compared to the Martian atmosphere is present in nakhlites and ALH84001. This component probably

represents mass fractionation of the Martian atmosphere, either during its adsorption by Martian

weathering products as suggested by Drake etal. (1994) or by its dissolution in Martian water, which

was then incorporated into secondary minerals, as suggested by Bogard and Garrison (1998).

Figure 6 plots 36Al'/13zXe versus 8_Kr/t32Xe ratios for the same sample analyses of Martian

meteorites considered by Bogard and Garrison (1998), including the impact glass data of Table 4. Argon

and Xe data, but not Kr data, were also reported for an impact glass vein from Zagami (Marti et al.,

1995). Figure 6 is less useful in identifying the various noble gas components compared to plots

involving tZ_Xe/'32Xe used in our previous paper, but it does summarize the trapped Martian components

in these samples. The preferred 36Ar/t32Xe and UKr/t3ZXe elemental ratios for Martian atmospheric gas

trapped in impact glass are 900 +_.100and 20.5 _+.3,respectively (Bogard and Garrison, 1998). These two

ratios differ from the values reported by the Viking spacecraft (Owen etal., 1977; Owen, 1992) by

factors of ~3.6 and -2.5 respectively (Figure 6). Compared to the Martian atmospheric composition

previously deduced by Hunten (1987) and Pepin (1991) from a more limited suite of Martian meteorite

analyses, the Kr/Xe ratio derived here is essentially the same, but the 36Ar/Xe ratio differs substantially.

Impact glass data, as well as data for several non-glass samples of Martian meteorites, define a mixing

array between the Martian mantle (Chassigny) component and the Martian atmospheric component

derived by Bogard and Garrison (1998). Contributions from terrestrial noble gas contamination mimic

the Martian atmospheric component on this mixing array (but not on plots involving _"gXe/mXe), and

thus the terrestrial and Martian atmospheric contributions cannot be resolved in Figure 6. (One

exception is glass inclusion EET79001,54 plotting closest to the Earth point, for which atmospheric-like

40Ar/_6Ar and _29Xey2Xe ratios indicate that terrestrial contamination makes the dominant contribution.)

Ar/Kr/Xe present in ALH84001 and the nakhlites is represented by those plotted points with lower Ar/Xe

ratios which fall below the Martian mantle/atmosphere mixing array. These samples have noble gases

mass fractionated in favor of heavier elements (Drake et al., 1994; Bogard and Garrison, 1998).
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COSMOGENICNOBLEGASES

Concentrations of cosmogenic 3He, ::Ne, and 38A.r are given in Table 5 for most Martian

meteorite analyses listed in Table 1. Measured 3He was taken to be entirely cosmogenic in origin. Ne

and Ar were assumed to be two component mixtures between a cosmogenic component and a trapped

component. However, all measured 2tNe concentrations are >99% cosmogenic. Cosmogenic 21Ne/22Ne

ratios listed are either measured ratios for single extractions releasing most of the Ne (e.g., ALH84001

samples) or were obtained from extrapolations of temperature data on 3-isotope Ne plots (see below).

To calculate 3SArco, for most samples, we assumed that trapped 36Ar/_SAr has the terrestrial value of 5.32

and that cosmogenic 36Ar/38Ar =0.66. Because trapped 36Ar/3_Ar is dominated by Martian atmospheric Ar

in both samples of EET79001 and Shergotty-B, we cannot calculate 38Ar_, for these samples. Figure 2

suggests that Ar in our glass sample ofY793605 consists of approximately equal parts of Martian

atmospher, c Ar and either terrestrial or trapped Martian mantle At. Thus, we assumed a trapped

36Ar/38Arratio of 4.6 (an average of values 3.9 and 5.3) to calculate _SArco_=1.76 xl0-gcm3/g. If we

assume trapped 36Ar/aSAr values of 3.9 and 5.3, 38Argo, becomes 1.5 and 2.0 xl0gcm3/g, respectively.

Also listed in Table 3 are cosmogenic He, Ne, and Ar data for four Martian meteorites as recently

reported by other laboratories.

GCR and SCR Irradiation

In most meteorites the majority of the cosmogenic Ne and Ar is produced by irradiation of

galactic cosmic ray particles and is referred to as a GCR component. However, surfaces of objects

exposed in space also acquire cosmogenic noble gases produced to depths of a few cm by energetic (>10

MeV) solar protons. The relative production rates of the solar-produced, or SCR component, are

comparable to the GCR production rates under conditions of no shielding, but the SCR/GCR production

ratio rapidly decreases with sample depth. (See Rao et al., 1994 for a discussion of SCR and GCR noble

gases.) Resolution of SCR noble gases from GCR noble gases can be difficult, but in principle can be

made on the basis of concentration profiles as a function of sample depth and from the 2_Ne/2:Ne ratio.

In many meteorites, the SCR 21Ne/"2Ne ratio is expected to be --0.57-0.63 and the GCR 2_Ne/22Ne ratio,

-43.78-0.094 (Garrison et al., 1995). Both sets of ratios vary with the degree of shielding of the sample

from the energetic particles, with smaller GCR 2tNe/22Ne ratios occurring for conditions of lower

shielding. SCR-Ne obviously cannot occur without GCR-Ne, so that cosmogenic 21Ne/:"Ne ratios

approaching the pure SCR composition are not observed in natural samples. Garrisoa et al. (1995)

suggested ,_hatfor meteorites having the chemical composition of ordinary chondrites or the lherzolite
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shergottites(e.g.,ALH77005, Y793605, and LEW88516), the approximate smallest GCR 2_Ne/Z_e ratio

that can be produced without also producing SCR-Ne is --0.78. This ratio can be slightly smaller for

samples having smaller Mg/(Si+AI) ratios, as would be the case for the basaltic-like shergottites (e.g.,

Shergotty, QUE94201) and the nakhlites.

Garrison et al. (1995) measured cosmogenie 2'Ne/2:_qe ratios of 0.7 I-0.78 in eight samples of

Martian meteorite ALH77005 and concluded that these indicated the presence of variable amounts of

SCR-Ne. Low 21Ne/2rNe ratios for a few analyses in the literature of EET79001, Zagami, and Shergotty

also suggested the presence of SCR Ne. The significance presence of SCR-Ne in shergottites, whereas it

is rare in chondrites, could imply different orbital parameters for these Martian meteorites, which caused

less ablation loss during atmospheric entry to earth (Garrison et al., 1995). Eugster et al. (1997a)

reported additional analyses of Zagami and LEW88516 that gave cosmogenic 2tNe/2rNe ratios of---0.8 I,

which would be consistent with GCR production under low shielding and need not indicate the presence

of SCR-Ne. These authors also measured 2_Ne/2"-_Neof 0.76 in two samples of QUE94201, which when

corrected to assumed cosmogenic 2°Ne/"_Ne ratios of--0.85, give cosmogenic 2tNe/2-'Ne of 0.78. Swindle

et al. (1996) report for a sample ofQUE94201 2_Ne/2rNe =0.76 and 2°Ne/22Ne =0.68. Ratios of 0.76-0.78

could indicate some SCR-Ne in QUE94201.

Figure 7 is a 3-isotope plot of Ne for those temperature extractions of Martian meteorites listed

in Table 1 which show primarily a cosmogenic composition and give 2_Ne/2rNe ratios <2.0. Those

extractions releasing very small fractions of the total Ne in each sample also have larger uncertainties in

isotopic ratios. Several extractions give 2_Ne/Z2Ne --0.84, the ratio expected for pure cosmogenic Ne

(Garrison et al., 1995). Three extractions of sample QUE94201,28 have small uncertainties and define a

relatively linear array which gives '_Ne/'2Ne =0.79 at :°Ne/22Ne ---0.84. Neon ratios for two extractions of

QUE94201,31 give larger uncertainties and do not define a reasonable mixing trend. The :°Ne/2rNe

ratios for two extractions of Shergotty-A indicate pure cosmogenic Ne, but give different 2tNe 2rNe ratios

of-0.77 and --0.81, whereas one extraction of Shergotty-B indicates an intermediate ratio of---0.79.

Neon ratios for all extractions of two samples of EET79001 have larger uncertainties because of small

cosmogenic concentrations and could be consistent with cosmogenic 2_Ne/:2Ne ratios in the range

of--0.76-0.80. The 1550°C extractions of two samples of ALH84001,114 taken from different depths just

below the fusion crust indicate pure cosmogenic Ne and give identical 2_Ne/2-'Ne of 0.845. Our sample

ALH84001,113, a different chip from near the fusion crust, gives a 2tNe/Z2Ne of 0.83. Similar 2_Ne/22Ne

ratios of ~0.83-0.85 were reported for LH84001 by Miura et al. (1995), Eugster et al.,(1997a), and

Swindle et al. (1995).(Table 5). The 1550°C extraction of our Y793605,71 sample gives 2_Ne/2_qe =0.83,
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whichissimilartoratiosof---0.81-0.83reportedforY793605by Eugsteretal. (1997b)andNagaoetal.

(1997).

NoneoftheNeisotopicdataforALH84001orY793605indicatethepresenceofa SCR-Ne

componentsuchaswefoundfor ALH77005(Garrisonetal.,1995). ALH84001 and Y793605 were

probably GCR irradiated in space under several cm of shielding (Graf et al., 1990). On the other hand,

all analyzed samples of QUE94201 possibly contain small amounts of SCR-Ne, which is consistent with

this meteorite having been irradiated in space as a very small object. Our samples of Shergotty, and

EET79001 may have contained small amounts of SCR-Ne. However, the amounts of SCR-Ne in these

two meteorites were undoubtedly small in comparison to the GCR-Ne concentrations and are unlikely to

have a significant effect on calculation of GCR exposure ages. Eugster et al. (1997a) came to a similar

conclusion for their samples of Zagami and LEW88516.

Space Exposure Ages

Eugster et al. (I 997a) recently calculated the space exposure ages of several Martian meteorites

using production rates obtained by Eugster and Michel (1995) from analyses of achondritic meteorites.

One of their interesting conclusion is that the exposure age of the lherzolite-shergottites (-3.8 Myr) is

distinctly longer than that of the basaltic-shergottites (.-2.8 Myr), which if true, might require ejection

from Mars in different cratering events. On the other hand, ejection of several related Martian meteorites

possessing young and similar isotopic formation ages in more than one cratering event raises important

issues about the age distribution of rocks on the Martian surface (Nyquist et al., 1998). Because the

chemical composition of lherzolitic and basaltic shergottites are quite different, the noble gas production

rates used to calculate exposure ages are not the same, but can differ by almost a factor of two. Further,

determination of cosmogenic noble gases and major elemental abundances are rarely made in aliquot

samples, and the prospect of sample heterogeneity raises additional uncertainties about relative

cosmogenic noble gas production rates. In addition, noble gas production rates must be corrected for

differences in shielding based on the 2_Ne/22Ne ratio. This correction is not well determined in the case

of very low shielding as is exhibited by several Martian meteorites. Below we will address some of the

effects of these uncertainties on space exposure ages for the four Martian meteorites listed in Table 5.

Cosmogenic noble gas data for ALH84001 have been reported by four laboratories and show

relatively small variations among samples (Table 5). This suggests that significant measurement biases

among these laboratories do not exist. Our samples ALH84001,113 and, 114-1 were,taken, from near the

meteorite fusion crust, and diffusive loss probably explains their relatively lower 3He _oncentrations;

sample ,1 14-2 apparently did not lose 3He. The small differences in cosmogenic 21Ne and _SAramong all
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analysesof ALH84001mayrepresentcompositionalvariations.Somewhatlargervariationsin

cosmogemcgasconcentrationsexistamongall analysesof QUE94201andY793605,althoughthese

variationstendto belessamongdifferentsamplesreportedbythesamelaboratory.In thecaseof

basalticmeteorites(e.g.,QUE94201andShergotty),greatervariationsincosmogenicnoblegasesmay

reflectthesignificantabundanceof bothfeldsparand pyroxene, with very different 2'Ne and nAr

production rates, whereas -95% of ALH84001 consists of the single mineral orthopyroxene.

Eugster et al. (1997a) assumed that small differences in :'Ne/2:Ne among individual analyses of

ALH84001 and QUE94201 were caused by real differences in shielding and from this derived 2'Ne

production rates that differ by factors of-I 5% and -50%, respectively. If shielding is the explanation

for observed variations in :lNe/2:Ne, then a positive correlation should exist between :'Ne/22Ne and

:'Ne_os concentrations. However, the extensive data set for ALH84001 (Table 5) does not show such a

positive correlation, but may even show a slight negative correlation. Neither do the data for QUE94201

show an obvious positive correlation. This implies that differences in shielding are not the explanation

for small observed variations in :lNe/:Ne among analyses of ALH84001 and QUE94201 (Table 5).

Rather, analytical uncertainties and compositional differences among samples probably cause the

observed ~2% spread in :'Ne/'_:Ne in these two meteorites. Further, theoretical models do not support

large variations in 2'Ne production rates for relatively small changes in 2'Ne/2_'_le. A change in 2'Ne/22Ne

comparable to the total spread observed for ALH84001 or QUE94201 would produce _<10% change in

the :'Ne production rate of ordinary chondrites (Michel et al., 199 l) with compositions similar to

}herzolitic meteorites and -6% change in the :'Ne production rate of Mg-poor eucrites (Eugster and

Michel, 1995) with compositions similar to basaltic Martian meteorites.

The above considerations suggests that analytical uncertainties and compositional variations

among samples account for much of the variation in cosmogenic noble gas data for Martian meteorites.

A reasonable method to partially compensate for these differences is to utilize average noble gas data

from multiple sample analyses, but excluding those analyses with unusually large deviations from these

averages. We then use the equations of Eugster and Michel (1995) to calculate production rates for these

average data. Chemical compositions used for ALH84001, QUE94201, and Shergotty were those

reported by Eugster et al. (1997a). Chemical compositions used for Y793605 were those reported by

Mittlefehldt et al. (1997). The derived production rates and the calculated 3He, "Ne, and 3s._r space

exposure ages obtained in this manner are given in Table 5. The uncertainty associated with each age

represents only the one-sigma uncertainty for the average of each cosmogenic gas concentration, and
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doesnot includetheuncertainty in the production rate used. Thus, these age uncertainties may be lower

limits to the actual uncertainty in calculated exposure ages.

The 3He. -'INe, and 3BArexposure ages obtained for ALH84001 are the same within their relative

uncertainties, although the 38At age is lower. The most probable ALH84001 age of 13.9+I Myr is

similar to several calculated 3He and 21Ne ages of~ 12-14 Myr reported for Chassigny and the nakhlites

(Eugster et al., 1997a). Although these authors conclude that ALH84001 has a distinctly older age

compared to these other Martian meteorites, we believe that some uncertainty still exists with this

conclusion. On the other hand, the significant differences in petrology and isotopic formation ages

between ALH84001 and these other meteorites suggest that it is unlikely a single impact crater ejected

all these meteorites from Mars (Nyquist et aI., 1998). The nakhlites do yield younger 3sAt ages of-9-I0

Myr tin comparison to their :He and 21Ne ages), but in the compilation of Eugster et al. (1997a), younger

3SAr ages also occur for Chassigny and some of the basaltic shergottites, as well as ALH8400 I. In our

opinion, some biases between calculated 2)Ne and 3SAt production rates for diverse chemical

compositions may yet exist.

The _He and 3SAt ages for the two basaltic shergottites QUE94201 and Shergotty are identical

within uncertainties at 2.0-2.5 Myr. The nNe exposure ages of these two meteorites, 3.3-3.,) Myr, appear

somewhat higher, however (Table 5). One possible explanation for this is that these meteorites contain

some amounts of SCR-Ne produced by energetic solar protons, as discussed above. Alternatively, the

21Ne production rate used may be slightly low as a consequence of adopting a given chemical

composmon for samples used for noble gas analyses. Eugster et al. (1997a) report similar 3He and 3SAr

ages of-2.2-2.9 Myr and "Ne ages of 3.0-3.3 Myr for a third basaltic shergomte, Zagami.

Concentrations of t°Be is similar in these three shergottites and indicate a space exposure age for

QUE94201 of 2.6 +_0.5 Myr (Nishiizumi and Caffee, 1996). Although QUE94201 has a terrestrial age of

-0.3 Myr tNishiizumi and Caffee. 1996), its space exposure age cannot be resolved from the other two

shergomtes. We conclude that the most likely space exposure age for basaltic shergottites is -2.7 Myr,

but that the Uncertainty in this age may be as large as +_0.6 M.vr. Although all the basaltic shergottites

likely were ejected from Mars in a common cratering event, that conclusion is not absolutely required by

the noble gas data.

The space exposure ages calculated for the Martian lherzolite Y793605 appear distinctly older

than those of basaltic shergottites (Table 5). The 3He and Z_Ne ages of Y793605 are,the same within

relative uncertainties at -5.0 Myr. Variations in reported Ca concentrations make the 38At ages less

certain. Our glass-rich sample was an aliquot of a sample which gave Ca=1.57% (Mittlefehldt et al.,



1997).Forthissamplethe"".M"productionrate would be 0.52 xl0%m3/Myr and the _gAr age 3.4 Ma. For

Y793605 whole rock, Mittlefehldt et al. (1998) report Ca =1.93%, whereas Warren et al. (1997) report Ca

=2.9%. Using the former Ca value and the average 38Argosfor the bulk sample analyses reported by Nagao

et al. (1997) and Eugster et ai. (1997b) gives a _SAr production rate of 0.54 x 10gcm2/Myr and an 3SAr age

of 4.0 Myr. Both of these :_._ ages are significantly less than the "He and :lNe ages.

The equations of Eugster and Michel (I 995) derived from achondrites do not make corrections to

the 3s.M"production rate for differences in shielding. Yet, it is observed from studies of chondrites, whose

chemical composition is similar to Y793605 and other Martian lherzolites, that _SArco, does depend upon

shielding (Grafet al., 1990 and references therein). In his study of noble gas production rates of

chondrites, Eugster (1988) g_ves a method for correcting the _SArproduction rate for shielding. Thus, we

used the shielding relationship of Eugster (1988) and the composition relationship of Eugster et al. (1997a)

to calculate shielding corrected 3SAt production rates for Y793605. These rates are 0.43 x 10%m3/Myr for

our glass-rich sample and 0.45 x l0%m_fMyr for the bulk samples analyzed by Nagao et al. (1997) and

Eugster et al. (1997b). These production rates give 3_Ar exposure ages for Y793605 of 4,1 Myr and 4.8

Myr, for the glass and bulk samples respectively, in much better a_eement with the _He and 2tNe exposure

ages. We conclude that the space exposure age for Y793605 is 4.9 _+0.6 Myr.

Eugster et al. (1997a) report _He and 2'Ne space exposure ages for Martian lherzolites ALH77005

and LEW88516 of 3.2-4.5 .Myr and 3_Ar ages of 2.9-3.9 Myr. Because these two meteorites were also

irradiated as small objects, shielding corrections to the _gAr production rates also may be required, which

would raise these 3_Ar ages by ~20%. The average (shielding-corrected) age for Y793605 of 4.9 +0.6 Myr

appears slightly older than _he largest calculated age of-4.5 Myr for these other lherzolites (Eugster et al..

1997a). This apparent d:_-ference is more likely due to uncenaintxes in noble gas production rates than to

different cratering events. Thus, we see no good argument for concluding that the exposure age of

Y793605 is older than that of other Martian lherzolites. However, the exposure age of Y793605 is almost

a factor of two greater than that of the basaltic shergottites. Either Martian lherzolites have an older

exposure age than basaltic shergottites and thus were ejected by a different cratering event, as concluded

by Eugster et al. (1997a). or compositional corrections to production rates are much more uncertain than
t

currently understood.
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Table 1. Measured He, Ne, and Ar data in temperature extractions of Martian meteorites. Gas concentrations are to

be multiplied by the exponents indicated and are in units of cm3STP/g. Uncertainties for isotopic ratios are one-

sigma and are derived from measurements uncertainties and corrections for blanks and doubly charged _°Ar.

Sample / JHe 4He _Ne 3*At 4OAr 2ONe?N e + _Ne/2_Ie ± _lAr/J6Ar +

Temp.°C e-9 e-8 e-9 e-9 e-8

ALH84001,113, 0.5-2 mm
250 16.83 43.25 0.13 0.21 9.8

450 190.13 214.10 2.73 0.33 102.1

1550 0.92 76.19 44.17 3.90 402.6

Total 207.88 333.64 47.03 4.43 514.5

ALH84001,114-1, 1.5-3.0 mm

450 197.47 257.35 2.07 0.47 107.4 0.875 0.051

1550 15.81 119.54 44.69 3.91 523.1 0.838 0.003

Total 213.28 376.89 46.72 4.38 630.5 0.840 0.004

ALH84001,114-2, 8-10 mm

450 213.18 252.86 L.76 0.61 97.7 0.959 0.042

1550 19.38 113.83 41.11 4.27 998.0 0.835 0.002

Total 232.56 366.69 42.94 4.89 1095.7 0.840 0.003

QUE94201,28, 0.5-2.0 mm

400 4.19 18.43 0.85 0.36 12.8

800 19.58 28.02 1.84 0.38 35.9

1200 4.01 20.84 2.98 2.43 166.1

1600 0.00 16.64 0.04 0.33 20.6
Total 27.78 83.93 5.70 3.49 235.4

QUE94201,31, interior
400 5.21 27.43 2.53 0.71 22.2

1000 20.64 38.54 2.99 8.41 249.6

1600 0.00 22.64 0.42 0.77 39.0

Total 25.85 88.62 5.94 9.89 310.8

Shergotty-A, 10% glass

350 20.51 89.19 0.39 0.I0 9.3 3.395 0.219

750 21.07 147.59 2.87 0.64 124.8 0.838 0.017

1550 0.01 7.99 3.49 2.15 102.6 0.849 0.013

Total 41.60 244.80 6.76 2.80 236.7 0.993 0.015

Shergotty-B, glass

350 13.43 49.33 0.25 0.18 9.1 4.618 0.720
1550 23.35 119.54 5.72 12.44 2091.2 0.941 0.036

"Total 36.79 168.91 5.97 12.62 2100.3 1.097 0.046

Y793605,71, glass

350 4.72 70.57 0.29 0.41 13.9 4.525 0.397

750 37.34 64.67 2.79 1.21 100.2 i.585 0.045

1550 22.54 3.47 9.55 6.33 845.6 0.893 0.013

Total 64.60 138.72 12.63 7.53 959.7 1.130 0.013

EET79001,8, glass
350 2.34 46.90 0.08 0.08 4.0 4.333 0.377

750 5.29 10.99 0.87 1.81 293.2

1000 0.35 1.93 0.36 4.76 856.9

1550 0.07 7.76 0.58 22.67 4189.9

Total 8.06 25.37 1.90 29.24 5344.0

EET79001,104, glass
350 0.01 5.87 0.05 0.55 18.2

750 5.92 30.75 1.00 1.73 307.8

1000 0.05 3.26 0.37 6.31 1180.8

1550 0.00 3.73 0.11 3.72 712.5

Total 5.99 a3.61 1.53 11.76 2219.3

2.072 0.364 0.523 0.036

0.894 0.025 0.852 0.006

0.828 0.006 0.829 0.005

0.836 0.002 0.829 0.001

0.833 0.009

0.845 0.001

0.845 0.001

0.836 0.006

0.844 0.001

0.844 0.001

1.694 0.009 0.678 0.003

1.050 0.006 0.755 0.002

0.938 0.004 0.778 0.003

6.080 0.183 0.480 0.043

1.119 0.002 0.754 0.001

3.025 0.060 0.603 0.004

1.513 0.034 0.747 0.005

0.824 0.135 0.757 0.009

2.109 0.024 0.687 0.003

1.860 0.062

1.364 0.404

1.401 0.056

1.737 0.086

7.413 0.840

1.471 0.067

0.859 0.302

0.667 0.169

1.467 0.089

0.550 0.014

0.772 0.003

0.806 0.001

0.777 0.002

0.503 0.051

0.780 0.005

0.768 0.005

0.373 0.034

0.733 0.006

0.830 0.002

0.798 0.002

0.476 0.025

0.643 0.006

0.717 0.009

0.702 0.006

0.668 0.004

0.296 0.023

0.682 0.005

0.761 0.010

0.733 0.025

0.691 0.004

0.201 0.030

0.397 0.023

1.165 0.023

!.063 0.002

0.336 0.026

1.161 0.013

1.072 0.012

0.311 0.015

1.079 0.008

0.983 0.007

0.210 0.005

0.642 0.01 i

1.027 0.003

0.941 0.042

0.893 0.001

0.213 0.005

0.417 0.001

0.928 0.032

0.442 0.001

0.105 0.034

0.601 0.015

1.333 0.018

1.164 0.004

0.025 0.008

0.441 0.005

0.438 0.005

0.141 0.024

0.299 0.011

0.444 0.004

0.421 0.004

0.135 0.025

0.252 0.002
0.269 0.001

0.270 0.001

0.269 0.001

0.177 0.007

0.273 0.002

0.293 0.001

0.319 0.002

0.298 0.001



Table2. Concentrations of '4Kr (10"'cm _ STP/g) and Kr isotopic

abundances relative to 14Kr =l.00. Analytical uncertainues are shown

beneath each rauo. IQ" isotopic data were not taken for the 350°C
extracuons of EET79001,8 and Y793605,71, and only s'K.r abundances

were measured for the three ALH84001 samples.

Sampte .' [r'Kr] m_Kr 13Kr 12Kr S°K-r nKr

EET79001,8

350°C 0.26 0.3184 n.m. n.m. n.m. n.m.

0.0225

750°C 1.67 0.2905 0.1951 0.2072 0.0341 0.0998
0.0094 0.0031 0.0066 0.0040 0.0076

1000 °C 12.86 0.2932 0.2047 0.2080 0.0466 0.0219
0.0018 0.0013 0.0013 0.0003 0.0027

1550°C 52.46 0.2975 0.2058 0.2099 0.0432 0.0935

0.0007 0.0008 0.0006 0.0002 0.0017

EET7901,104
750°C 1.97 0.2886 0.2079 0.2100 0.0552 0.0326

0.0079 0.003 ! 0.0042 0.0028 0.0048

1000°C 15.73 0.2984 0.2076 0.2127 0.0469 0.0151

0.0018 0.0013 0.0011 0.0006 0.0011

1550°C 9.55 0.2999 0.2085 0.2081 0.0479 0.0129

0.0032 0.0025 0.0023 0.0012 0.0017

Shergott2,.'-A
350°C 0.22 0.3527 0.2355 0.2210 0.0564 0.4461

0.0681 0.0504 0.0428 0.0259 0.7292

750°C 1.06 0.2858 0.2237 0.2019 0.0219 0.2307
0.0172 0.0139 0.0120 0.0166 1.4456

1550 °C 1.31 0.2546 0.2892 0.3256 0.0750 0.2684
0.0401 0.0313 0.0298 0.0151 0.4043

Shergotty-B
350°C 1.10 0.2794 0.2725 0.2360 0.0678 0.4546

0.0542 0.0463 0.0498 0.0243 0.0553

1550°C 23.17 0.2915 0.2020 0.2042 0.0469 0.0380
O.Ol I0 0.0076 0.0067 0.0067 0.0047

Y793605,71

350°C 2.90 0.3208 n.m. n.m. n.m. n.m.
0.0124

750cC 2.14 0.3176 0.1663 0.1863 0.0255 0.4173
0.0438 0.0364 0.0404 0.0231 0.0294

1550°C 12.06 0.3036 0.1997 0.2136 0.0306 0.0845

0.0053 0.0041 0.0045 0.0040 0.0053

ALH84001,113

1550°C 17.02

ALH8400 ! ,114-1

1550°C 11.38

ALH84001,114-2

1550°C 18.41
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Table 4. Concentrations of trapped 2°Ne and 36Aa"(units l0 9

cm 3 STP/g) and 2°NeP6Ar and 4°Ar/36Ar ratios in Martian

meteorite impact glasses. 4°Ar/a6Ar literature data are from

Bogard (1997). Viking data are from Owen et al. (1977).

Sample 2ONe 3_Ar 2°Nef_Ar 4°Ar/3_Ar

New Data:

EET79001,8 1.96 28.9 0.068 1830

EET79001,104 1.14 11.6 0.098 1880

Shergotty-B 1.70 10.5 0.16 1870

Y793605,71 3.61 6.2 0.58 1460

EET79001,2 7 Literature Data:

Bogard et al., 1984 7.1 28.3 0.25 1540

Swindle et al., 1986 6.1 24.1 0.25 1185

Becker & Pepin, 1984 2.34 19.3 0.12 2177
Wiens et al., 1986 15.3 14.1 1.08 2075

Wiens, 1988 5.2 14.0 0.37 1660

Zagami
A, Marti et ai., 1995 --- 38.7 --- 1515

B, Marti et al., 1995 --- 34.1 --- 1500

Mars, Viking 0.15-1.0 -3000
Earth 0.52 296



Table 5. Martian meteorite cosmogenic gas concentrations (10 .9

cm 3STP/g) and exposure ages. Production rates were calculated

from Eugster et al. (1997). Age uncertainties reflect only the l-

sigma variations in average gas concentrations and not the

uncertainty in production rates.

Meteorite Wt. 3He 21Ne _SAr : _Ne.'a:'Ne

/ Source rag. x l0 "9cm _ STP/g

ALH84001

,I 13 (1) 43.4 208 39.0 4.44 0.829

,114-1 (1) 25.5 213 39.5 4.43 0.845

,114-2 (1) 36.2 233 36.2 4.45 0.844

#1 (2) 19.5 254 39.5 4.45 0.830

#2 (2) 43.2 256 39.1 5.13 0.834

#1 (7) 513 249 40.2 4.28 0.839
#2 (7) 447 248 35.1 4.81 0.853

,28 (1 l) 18.1 234 40.4 5.68 0.826
Average 237 38.6 4.71 0.837

(io) _+18 _+1.9 :t:0.48
Prod. Rate 16.3 2.69 0.371

Exposure Age, Myr 14.5 14.4 12.7
(1o) -+1.2 £0.7 -+1.3

QUE94201

,28 (I) 70.5 27.8 4.29 2.82 0.778

,31 (1) 37.2 25.9 4.05 2.88 0.757

,23#1 (2) 21.6 34.3 4.25 4.53 0.762

,2322 (2) 30.1 33.8 4.29 3.72 0.756
bulk (4) 23.7 30. 9.2* 4.4 0.76
,18 (5) 96 35.7 5.4 4.1 n.r.

Average - 31.3 4.45 3.74 0.763
(1o) -+3.9 £0.54 £0.75

Prod. Rate 16.0 1.30 1.49

Exposure Age, Myr 2.0 3.4 2.5
( 1o) £0.2 £0.4 +0.5

Shergotty
2A (I) 66.4 41.6 5.24 3.12 0.79

2B (i) 17.6 36.1 5.14 n.r. 0.78

bulk (3) 100.9 40.8 5.94 3.88 0.79

KP3 (8) 153 45.8 5.71 3.06 0.78

$3/4 (8) 658 37.8 5.20 2.90 0.78
,8 (9) 43.8 38.0 4.53 2.63 0.78
,21 (9) 81.0 36.8 4.96 2.53 0.75

#817 (10) ?? 52" 5.8 4.0 0.67*

Average 39.6 5.30 3.16 0.779

(Io) -+3.4 -+0.47 +0.57
Prod. Rate 16.0 1.61 1.36

Exposure Age, Myr 2.5 3.3 2.3

(lo) -+0.2 -+0.3 _+0.4
Y-793605

,71 (I) 25.3 64.6 I0.1 1.76 0.830

21 (3) 20.8 78.0 11.3 2.26 0.826

22 (3) 20.5 73.9 10.5 2.59 0.806

21 (6) 17.9 89.1 12.6 2.09 0.814

22 (6) 51.0 83.5 I 1.2 !.76 0.8 ! 8

Average 77.8 11.1 2.09 0.819

(la) _+9.3 _+1.0 _+0.35
Prod. Rate 16.0 2.13 0.43

Exposure Age, Myr 4.9 5.2 4.8**
(lo) £0.6 _+0.5 _+0.8

* These analyses were not included in averages; n.r. = not

reported ** _'Ar age for Y793605 has been corrected for

shielding (see text)..

(I) this work; (2) Eugster et al., 1997a; (3) Eugster et at., 1997b;

(4) Swindle et al., 1996; (5) Dreibus et al., 1996; (6) Nagao et

al., 1997; (7) Miura et al., 1995; (8) Ott, 1988; (9) Becker and

Pepin, GCA 1986; (10)Heymann et al; 1968; (11) Swindle et

al., 1995.
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Figure Captions

Figure 1. Neon 3-isotope plot for stepwise temperature extractions of impact glass from Martian

meteorites. Data are those in Table 1 and those reported by Swindle et al. (1986), Wiens et al. (1986),

and Wiens (1988). Extrapolation of the Y793605,71 data to 2'Ne/22Ne =0.029 (solid line) suggest

trapped Z°Ne/22Ne of-7.0. Most other data suggest considerably higher 2°Ne/22Ne.

Figure 2. Relation between trapped 4°Ar/_6Ar and '29Xe/mXe in Martian meteorite impact glasses. The

composition for the earth and two possible compositions for the Martian atmosphere are also indicated.

The dashed and solid lines represent two component mixtures between a Martian composition having

"°Ar/36Ar _--_1900and '29Xe/'_ZXe =2.6 and the earth or the Chassigny Martian meteorite, respectively.

Figure 3. Isotopic composition of Kr in Martian meteorite glasses normalized to mass 84 and to the

composition of solar wind Kr (Pepin et al., 1995). Two extractions each (1000°C and 1550°C) are shown

for samples EET79001,8 and EET79001,104. One extraction releasing the largest amount of Kr is

shown for each of the Shergotty-B and Y793605,71 samples and for analyses of EET79001,27 reported

by Swindle et al. (1986) and Becker and Pepin (1984). Analytical uncertainties are indicated for each

isotopic ratio.

Figure 4. Isotopic composition of Kr in Martian meteorite glasses, the earth's atmosphere, average

carbonaceous chondrites (AVCC) and Chassigny, all normalized to mass 84 and to the composition of

solar wind Kr. The isotopic composition of Kr in the Martian atmosphere is defined by both the average

of six preferred analyses from Figure 3 and by the 1550°C extraction of sample EET79001,8. The

Martian composition previously estimated by Pepin (1991) is also shown.

Figure 5. Isotopic composition of Xe in EET79001 impact glasses normalized to mass 132 and to the

composition of Martian atmospheric Xe derived from glass inclusion EET79001,27 by Swindle et al.

(1986). Compositions shown are an average of four temperature extractions of EET79001,8 and,104,

the 1550°C extraction of EET79001,8, and the 1600°C extraction measured by Swindle et al. (1986). The

composition of Xe in Chassigny (Ott, 1988) is also shown. Analytical uncertainties are indicated for

each isotopic ratio.
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Figure6. Relationshipof trapped3_Ar,8"Kr,andmXeinMartianmeteoriteimpactglassesandin several

bulk (non-glass)analysesofotherMartianmeteorites.Compositionsareindicatedfor Chassigny(Ott,

1988),theearth,analysesoftheMartianatmospheremadebyViking(Owenetal., 1977),aprevious

derivationof atmosphericcompositionmadefromEET79001,27databyPepin(1991),andthe

compositionof theMartianatmospherederivedfromanextensivedatasetonimpactglassesbyBogard

andGarrison0998).

Figure7. Neon3-isotopecorrelationplot for those temperature extractions in Table 1 which give

2°Ne/22Ne <2.0 and are dominated by cosmogenic Ne. The dashed line indicates a mixing trend between

cosmogenic Ne with 2_Ne/:_'Ne ---0.76 and a trapped component with a Ne composition that of the earth's

atmosphere. Analytical uncertainties are either indicated or are smaller than the symbol.
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